Variational Inference for Grammar Induction with Prior Knowledge

نویسندگان

  • Shay B. Cohen
  • Noah A. Smith
چکیده

Variational EM has become a popular technique in probabilistic NLP with hidden variables. Commonly, for computational tractability, we make strong independence assumptions, such as the meanfield assumption, in approximating posterior distributions over hidden variables. We show how a looser restriction on the approximate posterior, requiring it to be a mixture, can help inject prior knowledge to exploit soft constraints during the variational E-step.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variational Inference for Adaptor Grammars

Adaptor grammars extend probabilistic context-free grammars to define prior distributions over trees with “rich get richer” dynamics. Inference for adaptor grammars seeks to find parse trees for raw text. This paper describes a variational inference algorithm for adaptor grammars, providing an alternative to Markov chain Monte Carlo methods. To derive this method, we develop a stick-breaking re...

متن کامل

Mildly context sensitive grammar induction and variational bayesian inference

We define a generative model for a minimalist grammar formalism. We present a generalized algorithm for the application of variational bayesian inference to lexicalized mildly context sensitive grammars. We apply this algorithm to the minimalist grammar model.

متن کامل

Shared Logistic Normal Distributions for Soft Parameter Tying in Unsupervised Grammar Induction

We present a family of priors over probabilistic grammar weights, called the shared logistic normal distribution. This family extends the partitioned logistic normal distribution, enabling factored covariance between the probabilities of different derivation events in the probabilistic grammar, providing a new way to encode prior knowledge about an unknown grammar. We describe a variational EM ...

متن کامل

The Shared Logistic Normal Distribution for Grammar Induction

We present a shared logistic normal distribution as a Bayesian prior over probabilistic grammar weights. This approach generalizes the similar use of logistic normal distributions [3], enabling soft parameter tying during inference across different multinomials comprising the probabilistic grammar. We show that this model outperforms previous approaches on an unsupervised dependency grammar ind...

متن کامل

Probabilistic Grammars and Hierarchical Dirichlet Processes

Probabilistic context-free grammars (PCFGs) have played an important role in the modeling of syntax in natural language processing and other applications, but choosing the proper model complexity is often difficult. We present a nonparametric Bayesian generalization of the PCFG based on the hierarchical Dirichlet process (HDP). In our HDP-PCFG model, the effective complexity of the grammar can ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009